# Entry into Major Groups Retaining Taxol via Sinenxan A

### Meng ZHANG, Da Li YIN\*, Ji Yu GUO, Xiao Tian LIANG

Institute of Materia Medica, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100050

**Abstract:** Compound **1** as a key intermediate of 1, 7, 9-trideoxytaxol was synthesized in ten steps from a biosynthetically available taxane, Sinenxan A. The key steps in the synthesis were deoxygenation at C-14, allylic oxidation at C-13 and construction of the oxetane ring.

Keywords: Taxol, Sinenxan A, deoxygenation.

Taxol exerts its anticancer activity through a unique mechanism<sup>1</sup> and it has been the subject of extensive chemical and biological studies. SAR studies have revealed that the functionalities at the southern hemisphere of the molecule are important for antitumor activity, except for  $OH-1^{2,3}$ . Thus synthesis of 1, 7, 9-trideoxytaxol will be very significant. Compared with taxol, Sinenxan A, a biosynthetic taxane product with good yield<sup>4</sup>, has the same taxane skeleton. But it has no oxetane ring and 13-oxygen, which are the key moieties for anticancer activity.



Compound **1** is considered as a secondary target of 1, 7, 9-trideoxytaxol. We started with Sinenxan A. The acetyl at C-14 was selectively removed by  $K_2CO_3/MeOH$  to give compound **2**. When **2** was treated with CS<sub>2</sub>/NaH, then with MeI compound **3** was obtained. By radical deoxygenation and allylic oxidation<sup>5</sup>, compound **4** and **5** could be obtained and their structure were confirmed by <sup>1</sup>HNMR, <sup>13</sup>CNMR, FABMS and 2DNMR spectra<sup>6</sup>. Compound **6** was obtained by hydrolysis and then selective acetylation. Treatment of **6** with OsO<sub>4</sub>/NMO, followed by Ac<sub>2</sub>O afforded compound **7** as the major product. Its configuration was confirmed by NOE difference spectra<sup>10</sup>. OH-5 was selctively protected with MsCl to give **8**. Because of acetyl transfer, 2-acetyl and 20-acetyl were removed at the same time to give compound **9**. Treatment of **9** with DBU/toluene afforded compound **10**, but when Bu<sub>4</sub>NOAc/butone was used the oxetane ring could not be given. <sup>1</sup>HNMR

<sup>\*</sup> E-mail: zhangm@imm.ac.cn

## Meng ZHANG et al.

showed <sup>2</sup>J of H-20 changed from 11 Hz of **9** to 8 Hz of **10**, which indicated formation of oxetane ring. Compound **10** was very sensitive to acidic medium. If compound **10** in CDCl<sub>3</sub> which did not be processed by  $K_2CO_3$ , it was rapidly converted to **11**<sup>8</sup>. **11** has a characteristic coupling constant J = 10 Hz, as the same as the reference<sup>9</sup>. Apparently the CDCl<sub>3</sub> used here contains a traces of acidic impurities. **10** was treated with Ac<sub>2</sub>O/DMAP to give Compound **1**. The structure of the latter was confirmed by <sup>1</sup>HNMR, <sup>13</sup>CNMR, FABMS<sup>10</sup>.

Scheme 1 Route of synthesis of compound 1



10

Reagents and conditions: a) 3 mol/L K<sub>2</sub>CO<sub>3</sub>/MeOH, rt., (30 - 40%); b) NaH/CS<sub>2</sub>/THF, reflux, 24 h, then MeI, 40°C, 80 - 90%; c) Bu<sub>3</sub>SnH/AIBN/Toluene, 80°C, 80%; d) PCC/NaOAc/celite/benzene, reflux, 65% based on 75% conversion; e) 1. 3 mol/L K<sub>2</sub>CO<sub>3</sub>/MeOH; 2. Ac<sub>2</sub>O/pyridine, 50%; f) 1. OsO<sub>4</sub>/NMO, then NaHSO<sub>3</sub>; 2. Ac<sub>2</sub>O/CH<sub>2</sub>Cl<sub>2</sub>/pyridine, two steps 71%; g) MsCl/pyridine, rt., 86%; h) 1 mol/L K<sub>2</sub>CO<sub>3</sub>/MeOH, 0°C, almost quantitative; i) DBU/toluene, 105°C, 30 - 40%; j) Ac<sub>2</sub>O/DMAP/pyridine, rt., 70%

Compounds 1, 3-11 were synthesized for the first time and their structures were confirmed by <sup>1</sup>HNMR, <sup>13</sup>CNMR, FABMS. The synthesis of 1, 7, 9-trideoxytaxol is underway.

### Acknowledgment

This research work was financially supported by NNSFC.

#### **References and Notes**

- 1. P. B. Schiff, J. Fant, S. B. Horwitz, Nature, 1979, 277, 665.
- 2. D. G. I. Kingston, J. Nat. Prod., 2000, 63, 726.
- 3. D. G. I. Kingston, M. D. Choridia, P. G Jagtap, et al., J. Org. Chem., 1999, 64, 1814.
- 4. K. D. Chen, W. –M., W. –H. Zhu, Manufacture of Taxane Analog by Cellus Culture of Taxus Plants. PCT Int. Appl. *WO* 9,406,740 (CI, C07035/37) **1994**, JP Appl. 92/246, 047, **1992**.
- 5. K. C. Nicolaou, P. G. Nantermet, H. Ueno, R. K. Guy, E. A. Couladouros, E. J. Sorensen, J. Am. Chem. Soc., **1995**, 117, 624.
- selected data of 5: pale yellow solid, mp 72-74°C; <sup>1</sup>HNMR (500 MHz, CDCl<sub>3</sub>, δ ppm) 6.06 (dd, 1H, J=12 Hz, 5.5 Hz, H-10), 5.46 (dd, 1H, J=2 Hz, 6.5 Hz, H-2), 5.27 (s, 1H, H-20), 5.23 (t, 1H, J=3 Hz, H-5), 4.82 (s, 1H, H-20), 3.19 (d, 1H, J=6 Hz, H-3), 2.87 (dd, 1H, J=6.7 Hz, 19.7 Hz, H-14), 2.48 (dd, 1H, J=12 Hz, 15 Hz, H-9), 2.33 (d, 1H, J=19.5 Hz, H-14), 2.20 (s, 3H, OAc-CH<sub>3</sub>-10), 2.14 (dd, 1H, J=2 Hz, 6.7 Hz, H-1), 2.10 (s, 3H, OAc-CH<sub>3</sub>-2), 2.06 (s, 3H, OAc-CH<sub>3</sub>-5), 1.99 (s, 3H, CH<sub>3</sub>-18), 2.14-1.85 (m, 1H, H-7), 1.79 (m, 3H, 2×H-6, H-9), 1.69 (s, 3H, CH<sub>3</sub>-16), 1.21 (m, 1H, H-7), 1.13 (s, 3H, CH<sub>3</sub>-17), 0.90 (s, 3H, CH<sub>3</sub>-19); <sup>13</sup>CNMR (125 MHz, CDCl<sub>3</sub>, δ ppm) 199.44 (13-C=O), 170.29 (OAc-C=O), 170.04 (OAc-C=O), 169.79 (OAc-C=O), 153.55 (C-20), 142.50 (C-12), 136.04 (C-11), 116.35 (C-4), 77.79 (C-10), 71.01 (C-5), 70.38 (C-2), 48.96 (C-1), 42.84 (C-15), 40.93 (C-8), 39.58 (C-14), 37.34 (C-3), 35.99 (C-6), 33.69 (C-9), 29.70 (C-7), 28.96 (C-17), 24.68 (C-16), 22.72 (C-18), 21.49 (OAc-CH<sub>3</sub>), 21.41 (OAc-CH<sub>3</sub>), 21.27 (OAc-CH<sub>3</sub>), 13.76 (C-19); FABMS *m*/z 461.3(M+1).
- selected data of **7** and NOE analysis of hydrogens at C-20: white solid, mp 198-200°C;
  <sup>1</sup>HNMR (500MHz, CDCl<sub>3</sub>, δ ppm) 6.04 (dd, 1H, J=12 Hz, 5 Hz, H-10), 5.49 (dd, 1H, J=2 Hz, 5 Hz, H-2), 4.49 (d, 1H, J=11.5 Hz, H-20), 4.04 (d, 1H, J=12 Hz, H-20), 3.80 (t, J=2.7 Hz, 1H, H-5), 3.14 (d, 1H, J=19.7 Hz, H-14), 2.99 (d, 1H, J=5 Hz, H-3), 2.72 (dd, 1H, J=6.7 Hz, 19.7 Hz, H-14), 2.40 (dd, 1H, J=12.5 Hz, 15 Hz, H-9), 2.24 (s, 3H, OAc-CH<sub>3</sub>-20), 2.17 (m, 1H, H-1), 2.12 (s, 3H, OAc-CH<sub>3</sub>-10), 2.08 (s, 3H, OAc-CH<sub>3</sub>-2), 2.07 (s, 3H, CH<sub>3</sub>-18), 2.00 (m, 1H, H-7), 1.79 (m, 2H, 2×H-6), 1.68 (s, 3H, CH<sub>3</sub>-16), 1.54 (dd, 1H, J=5.5 Hz, 15 Hz, H-9), 1.13 (s, 3H, CH<sub>3</sub>-17), 1.07 (m, 1H, H-7), 0.89 (s, 3H, CH<sub>3</sub>-19);
  <sup>13</sup>CNMR (125 MHz, CDCl<sub>3</sub>, δ ppm) 200.41 (C=O-13), 171.30 (OAc-C=O), 169.89 (OAc-C=O), 169.79 (OAc-C=O), 152.24 (C-12), 137.24 (C-11), 77.09 (C-10), 72.56 (C-4), 70.88 (C-2), 69.36 (C-5), 65.49(C-20), 48.39 (C-1), 44.23 (C-15), 41.39 (C-8), 38.21 (C-14), 37.46 (C-3), 37.34 (C-6), 35.77 (C-9), 31.01 (C-7), 24.55 (C-17), 24.51 (C-16), 24.20 (C-18), 21.59 (OAc-CH<sub>3</sub>), 21.23 (OAc-CH<sub>3</sub>), 20.80 (OAc-CH<sub>3</sub>), 13.28 (C-19); FABMS *m/z* 495.3(M+1).



8. Conversion of compound 10 in CDCl<sub>3</sub>:



- 9. A. Walh, F. Gueritte-Voegelein, D. Guenard, et al., Tetrahedron 1992, 48, 6965; G. Samaranayake, K. A Neidigh, D. G. I. Kingston, J.Nat. Prod., 1993, 56, 884.
- 10. selected data of 1: colorless film; [α]<sub>20</sub><sup>30</sup> +98 (c 0.50, CHCl<sub>3</sub>); <sup>1</sup>HNMR (500 MHz, CDCl<sub>3</sub>, δ ppm) 5.98 (dd, 1H, J=12Hz, 5.5Hz, H-10), 5.48 (dd, 1H, J=2.5 Hz, 6 Hz, H-2), 4.93 (d, 1H, J=9 Hz, 1H, H-5), 4.50 (d, 1H, J=8 Hz, H-20), 4.18 (d, 1H, J=8 Hz, H-20), 2.87 (d, 1H, J=6.5 Hz, H-3), 2.73 (dd, 1H, J=7 Hz, 19.5 Hz, H-14), 2.51 (dd, 1H, J=12 Hz, 15 Hz, H-9), 2.31 (d, 1H, J=20.5 Hz, H-14), 2.22 (m, 1H, H-7), 2.10 (dd, 1H, J=6.5 Hz, 2.5 Hz, H-1), 2.08 (s, 3H, OAc-CH<sub>3</sub>-10), 2.073 (s, 3H, OAc-CH<sub>3</sub>-2), 2.04 (s, 3H, OAc-CH<sub>3</sub>-4), 2.02 (s, 3H, CH<sub>3</sub>-18), 1.93 (m, 2H, H-6), 1.69 (s, 3H, CH<sub>3</sub>-16), 1.67 (dd, 1H, J=5.5 Hz, 15 Hz, H-9), 1.56 (m, 1H, H-7), 1.37 (s, 3H, CH<sub>3</sub>-17), 1.13 (s, 3H, CH<sub>3</sub>-19); <sup>13</sup>CNMR (125 MHz, CDCl<sub>3</sub>, δ ppm) 199.03 (C=0-13), 169.91 (OAc-C=O), 169.73 (2×OAc-C=O), 153.61 (C-12), 137.07 (C-11), 84.88 (C-4), 82.38 (C-5), 76.29 (C-10), 70.94 (C-20), 70.85 (C-2), 47.19 (C-1), 44.02 (C-15), 41.22 (C-8), 38.01 (C-14), 37.59 (C-3), 36.93 (C-6), 35.27 (C-9), 35.05 (C-7), 27.42 (C-17), 24.54 (C-16), 21.83 (OAc-CH<sub>3</sub>), 21.59 (OAc-CH<sub>3</sub>), 21.47 (C-18), 21.22 (OAc-CH<sub>3</sub>), 13.47 (C-19); FABMS *m/z* 477.3 (M+1).

Received 5 July, 2001